Nowhere-zero flow polynomials

نویسنده

  • Shmuel Onn
چکیده

In this article we introduce the flow polynomial of a digraph and use it to study nowherezero flows from a commutative algebraic perspective. Using Hilbert’s Nullstellensatz, we establish a relation between nowhere-zero flows and dual flows. For planar graphs this gives a relation between nowhere-zero flows and flows of their planar duals. It also yields an appealing proof that every bridgeless triangulated graph has a nowhere-zero four-flow.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The number of nowhere-zero flows on graphs and signed graphs

The existence of an integral flow polynomial that counts nowhere-zero k-flows on a graph, due to Kochol, is a consequence of a general theory of inside-out polytopes. The same holds for flows on signed graphs. We develop these theories, as well as the related counting theory of nowhere-zero flows on a signed graph with values in an abelian group of odd order. Our results are of two kinds: polyn...

متن کامل

Cubic Graphs without a Petersen Minor Have Nowhere–zero 5–flows

We show that every bridgeless cubic graph without a Petersen minor has a nowhere-zero 5-flow. This approximates the known 4-flow conjecture of Tutte. A graph has a nowhere-zero k-flow if its edges can be oriented and assigned nonzero elements of the group Zk so that the sum of the incoming values equals the sum of the outcoming ones for every vertex of the graph. An equivalent definition we get...

متن کامل

Title Nowhere - Zero 3 - Flows in Signed Graphs

Tutte observed that every nowhere-zero k-flow on a plane graph gives rise to a kvertex-coloring of its dual, and vice versa. Thus nowhere-zero integer flow and graph coloring can be viewed as dual concepts. Jaeger further shows that if a graph G has a face-k-colorable 2-cell embedding in some orientable surface, then it has a nowhere-zero k-flow. However, if the surface is nonorientable, then a...

متن کامل

Nowhere-Zero 3-Flows in Signed Graphs

Tutte observed that every nowhere-zero k-flow on a plane graph gives rise to a kvertex-coloring of its dual, and vice versa. Thus nowhere-zero integer flow and graph coloring can be viewed as dual concepts. Jaeger further shows that if a graph G has a face-k-colorable 2-cell embedding in some orientable surface, then it has a nowhere-zero k-flow. However, if the surface is nonorientable, then a...

متن کامل

Orbit-counting polynomials for graphs and codes

We construct an “orbital Tutte polynomial” associated with a dual pair M and M∗ of matrices over a principal ideal domain R and a group G of automorphisms of the row spaces of the matrices. The polynomial has two sequences of variables, each sequence indexed by associate classes of elements of R. In the case where M is the signed vertex-edge incidence matrix of a graph Γ over the ring of intege...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • J. Comb. Theory, Ser. A

دوره 108  شماره 

صفحات  -

تاریخ انتشار 2004